If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-10q-66=0
a = 3; b = -10; c = -66;
Δ = b2-4ac
Δ = -102-4·3·(-66)
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{223}}{2*3}=\frac{10-2\sqrt{223}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{223}}{2*3}=\frac{10+2\sqrt{223}}{6} $
| 4x^2+20=-44 | | 2/3x+1=1/6x=8 | | 5x+260=-8+650 | | q^2-5q+66=0 | | 39+2x+13=180 | | c÷2=-91 | | d+53 =87 | | 2(9t-1.35)=3(2.62+7.1t) | | -8j+-18j+-j+9=-18 | | 4(3u+8)=8u-8 | | 10x=50;x=5 | | 2+7n=8+n | | 2x-1.50=1.50 | | s=(21-2)180 | | -53n+43+34=194 | | c+5=-40 | | x=1+1/1+1/1+1 | | 15a-15-10a=0 | | h+14=17 | | 36=(-9)xx | | 0.3x+11.9=x-5.32 | | w=5.25 | | 2/3e=1/6 | | -8+9(-2p+2)=-8(-6p+7) | | 2x+5=25;x= | | 4(4x-1.9)=2x-7.6 | | 9=x/2+2 | | 2(v-10)=-2 | | -4t–7=9 | | -3(-9d+3)=3(7d-5) | | 16+4y=y+25 | | -7z=-z+5(-2z-8) |